
 Performance
Testing

Best of TestRail Quality Hub

Contents

Testing All 5 Aspects of a System’s Performance	 3

Shifting Left: Performance Testing at the Unit Testing Level	 10

Performance Testing in an Ephemeral Environment	 16

Performance Testing in Edge Computing	 21

Performance Testing Asynchronous Applications	 27

Performance Testing: Adding the Service Registry and Service Mesh into the Mix	 33

How the Service Mesh Fits with Performance Testing	 38

Software testing encompasses every aspect of an application, including the user

interface, functional testing, load testing, security, and usability. But even if an

application passes all of these tests successfully, users will be fully satistifed only if

the application also delivers the necessary performance. To assist you in your

performance testing, this ebook presents the best recent blog articles on some of the

most challenging aspects of performance testing from the Gurock Quality Hub.

3

Testing All
5 Aspects of a System’s
Performance

Performance Testing

Bob Reselman, Industry Analyst

4

Good performance is a must for any application, whether it’s in your cell phone, in a

desktop computer or out on the cloud. Thus, before any application can make its way

into production, it must be tested to make sure that it meets—or, hopefully, exceeds—

the required performance standards.

This is easier said than done because there is no single metric you can use to

determine the quality of an application’s performance. Rather, performance testing

requires that you measure a variety of metrics that relate to the different aspects of an

application’s execution.

Understanding the different aspects of application performance is critical when planning

tests to determine an application’s quality. Here, let’s delve into these different aspects of

computing performance and how to incorporate them into your test planning.

Computing can be divided into five operational aspects: algorithm, CPU, memory,

storage and input/output (I/O).

The Different Aspects of Computing Performance

The table on the next page describes how these aspects relate to application

performance.

5

Measuring the performance of an application in terms of each of these aspects gives you

the depth of insight required to determine if your application is ready for production use.

How and when you’ll measure these aspects will vary according to the priorities you set in

your test plan.

Aspect Description Relevant Testing Metrics

Algorithm
The calculations, rules and high-level logic
instructions defined in a program to be
executed in a computing environment

Rule(s) assertion pass/fail, UI
test pass/fail, database query
execution speed, programming
statement execution speed

CPU

The central processing unit is circuitry within
a computing device that carries out program-
ming instructions. CPUs execute low-level
arithmetic, logic, control and input/output
operations specified by the programming
instruction

Clock speed, MIPS (millions of
instructions per second), in-
struction set latency period,
CPU utilization

Memory

The computer hardware that stores infor-
mation for immediate use in a computing
environment, typically referred to as Random
Access Memory (RAM)

Memory speed per access step
size, memory speed per block
size

Storage

Computer hardware that stores data for
persistent use. The storage hardware can be
internal to a given computing device or in a
remote facility on a dedicated storage device

Disk capacity utilization, disk
read/write rate

I/O

Describes the transfer of data in and among
computing devices. Internal I/O describes the
transfer of data to the CPU, memory, internal
disk storage and to interface to external
networks. External I/O describes data transfer
to and from different points on a network

Network path latency, available
peak bandwidth, loss rate,
network jitter profile, packet
reorder probability

https://www.embedded.com/design/prototyping-and-development/4024993/How-to-calculate-CPU-utilization
https://www.passmark.com/products/pt_advmem.htm
https://www.passmark.com/products/pt_advmem.htm
https://calomel.org/network_loss_emulation.html

6

No single testing session can cover all aspects of application performance, and it’s rare

for a single team to have the expertise required to test all aspects. Typically, different

teams in the quality assurance landscape will focus on a particular aspect of perfor-

mance testing. The testing activities of each team are organized according to a general

test plan, with each part of the test plan defining a particular set of priorities to be

examined.

For example, the networking QA team will design and execute networking tests. The

customer experience QA team will implement UI functional testing. The data QA team

will performance test data access and query execution. And additional teams with

expertise in other aspects will participate according to the need at hand.

The important thing to understand is that acceptable performance is determined in

terms of all aspects of your application’s operation, and different teams will have the

expertise and test methodologies required to make the determination about a given

aspect of performance quality. Therefore, when creating a test plan, you will do well to

distribute work according to a team’s expertise. The result of the testing done by all the

teams gets aggregated into a final test report, which influences the decision to release

the software to production, as shown below:

Establishing Priorities in a Test Plan

7

Many teams are required in order to test the performance quality of an application

8

Comprehensive testing requires that all aspects of application performance be tested,

measured and evaluated. Of equal importance is that the environment in which the

application is tested be identical to the production environment into which the appli-

cation will be deployed. The code in the testing environment probably will be the same

code that will be deployed to production, but the code might vary between a test

environment and production due to different configuration settings and environment

variable values.

Tests that depend on the physical environment are another matter. Fully emulating

the production environment in a testing scenario can be an expensive undertaking.

Thus, requiring full emulation depends on the aspect of testing in play. When testing

for algorithm, in terms of pass/fail of a particular rule or UI response, the speed of

execution does not really matter—for example, testing login and authentication works

according to credentials submitted. However, when testing that login happens within

the time advertised in the application’s service level agreement, environment consis-

tency between testing and production environments becomes critical. It’s a matter of

testing apples to apples.

One of the benefits of automation, virtualization and cloud computing is that produc-

tion-level test environments can be created on an as-needed basis, in an ephemeral

manner. In other words, if your production environment is an industrial-strength, AWS

m5.24xlarge environment (96 CPU, 384 GB memory, 10,000 Mbps network bandwidth),

you can create an identical environment for testing, keeping it up and running only for

The Importance of Environment Consistency

9

the setup and duration of the test. Once the test is over, you destroy the environment,

thus limiting your operational costs. Ephemeral provisioning not only provides the

environmental consistency required to conduct accurate testing over all five aspects of

performance testing, but also allows you to test in a cost-effective manner.

Conclusion

No single test provides an accurate description of an application’s performance, any

more than a single touch of an elephant describes the entire animal. A comprehensive

test plan will measure system performance in terms of all five aspects. Conducting a

thorough examination of an application by evaluating the metrics associated with the

five aspects of application performance is critical for ensuring that your code is ready

to meet the demands of the users it’s intended to serve.

10

Shifting Left:
Performance Testing at
the Unit Testing Level

Performance Testing

Bob Reselman, Industry Analyst

11

Unit testing is important. Performance testing is important. You’ll get little argument

from the people with boots on the ground, actually doing software development, that

these tests matter a lot.

Unit testing is widely practiced in development circles, particularly by programmers who

have embraced test-driven development (TDD). Unit testing, by definition, is conducted

as the code is being written. Now a similar trend is emerging with regard to performance

testing—to move it as close as possible to when the code is being written, into the hands

of the developer. This is known as Shift Left movement. However, there’s a problem.

As much as it’s a nice idea to have developers conduct performance tests on their code

as immediately as they do with unit testing, real-world performance testing is not a

simple matter of “write it and run it.” Much more is involved, particularly when unit and

performance tests are part of a continuous integration and delivery process. Unless

proper testing planning is in place, shifting performance testing left will not only hinder

the work of the developer, but also produce test results that are of questionable reli-

ability. The devil really is in the details.

The first step is to understand the difference between unit testing and performance

testing.

Unit Testing vs. Performance Testing

The purpose of a unit test is to ensure that a unit of code works as expected. The

typical unit of code is a function. A unit test submits data to a function and verifies the

https://dzone.com/articles/the-shift-left-principle-and-devops-1

12

accuracy of the result of that function. Unit testing is conducted using a tool such as

JUnit (Java), unittest (Python), Mocha (NodeJS), PHPUnit or GoogleTest (C++). There are

many others. Using a unit testing tool allows the tests to run automatically within a CI/

CD process, under a test management system such as TestRail.

Performance testing, on the other hand, is the process of determining how fast a piece

of software executes. Some performance tests are system-wide. Some exercise a part

of the system. Some performance tests can be quite granular, to the component or

even the function level, as in the case of a microservice.

The types of performance tests vary. Some performance tests focus on database effi-

ciency. They’ll execute a set of predefined SQL queries against a database of interest,

using a tool such as JMeter. JMeter runs the queries and measures the time it take

each query to run.

JMeter also can be used to measure the performance of different URLs in an API. A test

engineer configures JMeter to make HTTP calls against the URLs of interest. JMeter

then executes an HTTP request against the endpoint and measures the response time.

This process is very similar to performance testing a database.

Web pages can be subject to performance testing. GUI tests can be implemented using

a tool such as JMeter or Selenium to exercise various web pages according to a pre-re-

corded execution script. Timestamps are registered as the script runs, and these time-

stamps are then used to measure the execution timespan.

Networks are also subject to performance tests. It’s becoming more common to run

jitter tests that measure the variation in latency over a network as companies such as

Facebook, Slack and Atlassian build more video conferencing capabilities into their

products.

The important thing to understand is that unit testing is about ensuring a unit of code

produces the logical results as expected. Performance testing is about ensuring the

code executes in the time expected. The difference may seem obvious, but there are

definite implications when performance testing shifts left, moving it closer to the

beginning of the software development lifecycle and near, if not into, the hands of the

developer.

https://junit.org/junit5/
https://docs.python.org/2/library/unittest.html
https://mochajs.org/
https://phpunit.de/
https://github.com/google/googletest
http://www.gurock.com/testrail/
https://en.wikipedia.org/wiki/Microservices
http://jmeter.apache.org/
http://www.seleniumhq.org/

13

There is a fundamental dichotomy in play. Unit tests are intended to run fast so as not

to slow down the work of the developer. A developer might write and run dozens of

unit tests a day. One slow unit test is a productivity nightmare. Performance tests can

require a good amount of time to set up, run and measure accurately. If initializing large

datasets or provisioning multiple virtual machine instances is required, a performance

test can take minutes or even hours to set up.

The rule of thumb is that unit tests need speed and performance tests need time.

Therefore, unless they’re planned properly, one can get in the way of the other and

impede the effectiveness and efficiency of the entire testing process in the CI/CD

pipeline.

The Need for Speed vs. the Need for Time

As mentioned above, unit tests are intended to be run fast. A unit test that runs more

than a few seconds is a rarity. Performance tests can take time to set up and run,

particularly when the test executes a number of tasks during a testing session—for

example, performance testing a large number of pages on a website.

The conflict between a need for speed and the need for time is a definite challenge as

testers try to move performance testing closer to the unit test paradigm. The further

testing shifts left toward the beginning of the test cycle, the faster the testing needs to

execute. A long-running performance test will actually create a performance bottleneck

in the test process.

14

Thus, as you consider shifting performance testing left, discretion is the better part

of valor. Not every performance test is well suited for execution early in the testing

process. The need for speed trumps the need for time. Short-running performance

tests, such as those measuring the time it takes for a single query to run or a series of

nested forEach loops to execute, are appropriate for shifting left, provided they can run

in under a second. Performance tests that take longer to run need to run later in the

test plan.

Performance Testing Is All About Apples to Apples

When considering making some aspects of performance testing the responsibility of

the developer, another thing that needs to be taken into account is to make sure the

physical test environments in which the performance tests run are consistent. It’s an

apples-to-apples thing. A performance test running on a developer laptop that has a

4 core CPU is going to behave much differently than the same test running on a VM

equipped with 32 CPUs. Physical environment does matter. Thus, in order for performance

 testing to be accurate and reliable, the physical test environment must be real-world,

beyond the typical physical configuration of a developer’s workstation.

Making part of performance testing the responsibility of developers requires develop-

ers to change the way they work. The CI/CD process also needs to be altered somewhat.

Again, the test environment needs to be consistent and reliable.

15

One way to ensure consistency is to have developers execute performance tests by

moving code from their local machines over to a standardized performance testing

environment before the code is committed to a repository. Modern development shops

configure their CI/CD pipeline so that code enters an automated test and escalation

process once it’s committed. It’s up to the developer to decide when the code is perfor-

mant enough to commit to the repo. If the code performs to expectation, the developer

makes the commit.

Testing code in a dedicated test environment before committing is a different way of

working for many developers, but it’s necessary when shifting part of performance

testing left.

16

Performance Testing
in an Ephemeral
Environment

Performance Testing

Bob Reselman, Industry Analyst

17

A while back I had an interesting problem to solve. I was involved with refactoring a

cloud-based application that did intensive data analysis on very large data sets. The

entire application —business logic, analysis algorithm and database — lived in a single

virtual machine. Every time the analysis algorithm ran, it maxed out CPU capacity and

brought the application to a grinding halt. Performance testing the application was

easy: We spun up the app, invoked the analysis algorithm and watched performance

degrade to failure. The good news is that we had nowhere to go but up.

The way I solved the problem was to use ephemeral computing. I implemented a

messaging architecture to decouple analysis from general operation. When analysis is

needed, the app sends a message to a topic. An independent analysis manager takes

the message off the topic and responds by spinning up a Docker container within a

Kubernetes job. The Docker container running in the Kubernetes job has the analysis

code. The Kubernetes node has 32 cores, which allows the code to run fast. Then, when

the job is done, the Kubernetes job is destroyed, as shown below. We end up paying only

for the considerable computing resources we need, when we need them.

Kubernetes Job

Container
with Analysis
Code

Message Broker

Analysis
Results Topic

Do Analysis
Topic

Analysis
Manager

Application

Analysis Results

Message to
Do Analysis

Creates

18

Defining Test Metrics

An overlooked and underused tool in testing is the developer console,

available in all web browsers. For testers who are developing UI automation

tests, this tool is necessary to identify DOM elements. Sometimes, building a

CSS expression for difficult-to-locate elements is necessary and developer

tools make this possible. By investigating logs and adjusting JavaScript,

testers can investigate bugs and provide detailed descriptions of the

problems they see. There are many tutorials available that help beginners

learn to use the console methods that are useful to conduct a deep investi-

gation of a website.

Taking the DevOps Approach

Given that the system we created was message-based, we couldn’t just

measure timespan, as is typical of an HTTP request/response interaction.

Rather, we needed to trace activity around a given message. Thus, we took

the DevOps approach.

Using message-driven architecture in combination with automation to provision envi-

ronments ephemerally has become a typical pattern, so I wasn’t really breaking any new

ground. But I did encounter a whole new set of problems in terms of testing — particu-

larly performance testing.

Implementing a Performance Test

The way we ran performance tests was standard. We spun up some virtual users that

interacted with the application to instigate the analysis jobs. We started small and

worked our way up, from 10 virtual users to 100. We didn’t go beyond that count because

the service-level agreement we needed to support called for 10 jobs running simultane-

ously, but we went up to 100 to be on the safe side.

http://blog.teamtreehouse.com/mastering-developer-tools-console

19

I got together with the developer creating the message emission and con-

sumption code. Together we came to an agreement that information about

the message would be logged each time a message was sent or received.

Each log entry had a timestamp that we would use later on. We also decided

that each log entry would have a correlation ID, a unique identifier similar to

a transaction ID.

The developer implementing messaging agreed to create a correlation ID and

attach it to the “do analysis” message sent to the message broker. Any activity

using the message logged that correlation ID in addition to the runtime in-

formation of the moment. For example, the application logged information

before and after the message was sent. The Analysis Manager that picked

up the message logged receipt data that included this unique correlation

ID. Message receiving and forwarding was logged throughout the system as

each process acted upon the message, so the correlation ID tied together all

the hops the message made, from application to analysis to results.

We also met with the developer implementing the Kubernetes job to have

the correlation ID included when logging the job creation and subsequent

analysis activity, where applicable.

Getting the Results
Once we had support for correlation IDs in place, we wrote a script that

extracted log entries from the log storage mechanism and copied them to

a database for review later on. Then, we ran the performance test. Each

virtual user fired off a request for analysis. That request had the correlation

ID that was used throughout the interaction. We ran the tests, increasing the

number of virtual users from 10 to 100.

One of the results the test revealed was that the messages were taking a long

time to get to topic and onto the Analysis Manager subscriber. We checked

with the developer who created the messaging code, and he reported that

everything was working as expected on his end. We were perplexed.

https://blog.rapid7.com/2016/12/23/the-value-of-correlation-ids/

20

Our performance issue is not at all atypical in software development — things work well

in the development environment but behave poorly under independent, formal testing.

So we did a testing post-mortem.

When we compared notes with the development team, we uncovered an inter-

esting fact: Developers were using one region provided by our cloud service, but

we were testing in another region. So we adjusted our testing process to have the

Kubernetes job run in the same region as the the one used by the developer. The result?

Performance improved.

We learned a valuable lesson. When implementing performance testing on a cloud-

based application, do not confine your testing activity to one region. Test among

a variety of regions. No matter how much we want to believe that services such as

AWS, Azure and Google Cloud have abstracted away the details of hardware from the

computing landscape, there is a data center down in that stack filled with racks of

computers that are doing the actual computing. Some of the data centers have state-

of-the-art hardware., but others have boxes that are older. There can be a performance

difference.

In order to get an accurate sense of performance, it’s best to test among a variety of

regions. When it comes to provisioning ephemeral environments, everything is not the

same everywhere.

Gotcha: Everything Is Not the Same Everywhere

21

Performance Testing
in Edge Computing

Performance Testing

Bob Reselman, Industry Analyst

22

Edge computing is about moving computational intelligence as close to the edge of a

network as possible. Essentially, in the past, “frontline” devices gathered data passively

and sent the information onto a target endpoint for processing. Under edge computing,

some processing is done within the frontline device itself, and the result of the compu-

tation is moved onto other processing targets within the network.

Edge computing is a transformational approach to how distributed applications works

on the internet. But, as with any new technique, there are challenges. This is particular-

ly true when it comes to performance testing within an edge computing ecosystem.

Understanding these challenges is useful, particularly now that edge computing is

becoming a more prevalent part of the internet. With this new paradigm, we will need to

devise new ways of approaching performance testing.

Understanding Edge Computing

One of the easiest ways to understand edge computing is to consider a video camera

connected to the internet. Before edge computing came along, the video camera

simply captured all visual activity occurring before its lens. Each frame of video was

converted into a chunk of data that was sent over the network in a stream. The camera

was on all the time, streaming data back to a server, regardless of whether there was

any motion occuring. Clearly, a good deal of data having marginal use was being passed

over the network, eating away at bandwidth.

23

In an edge computing paradigm, intelligence is put into the video camera so it can

identify motion and then stream data back to the server only when motion occurs, as

shown below. Such an approach is highly efficient because only valuable data gets back

to server for processing.

This sort of computing is now becoming the norm. All the security video cameras in

the building where I live are motion-sensitive: The video camera is smart enough to

detect motion and save only the video stream for the given time-span of motion. This

means that the only time that data is saved is when there is activity around the building.

The camera also timestamps the video when saving the stream, so we don’t have to

go through hours of viewing to find an event of interest. We can just browse through

recordings of time stamped video segments. A process that used to take hours is now

done in minutes.

Now apply the concepts behind edge computing to other types of devices connected

to the internet of things. Take a fitness device, for example. A fitness tracker has the

ability to monitor the heartbeat of the person wearing it. Applying the principles of

edge computing, we can make it so that when the wearer’s heartbeat stops, the device

24

automatically contacts an EMT service for medical assistance directly. There is no

delay incurred due to the latency created, should a backend server be the sole point of

computation intelligence. Rather, the edge device is making the call for help immedi-

ately, saving time in a life-or-death situation. Such an example is extreme, but it does

provide profound insight about the power and benefit of edge computing.

Edge computing is an important technology. If nothing else, it will cut down on the

amount of useless data that gets passed around the internet. But, as with any technol-

ogy, in order to be viable, it must be testable. And this is where the challenges of edge

computing scenarios emerge.

Performance Testing at the Edge

Computing requires both software and hardware. Over the years hardware has become

so abstract that we now treat a lot of it as software — thus, infrastructure as code. As

such, a good deal of our performance testing treats the underlying hardware as a virtu-

alized layer that is consistent and predictable. For the most part, it is, provided you’re

dealing with the types of hardware that live in a data center. But things get difficult

when we move outside the data center.

Take mobile phones, for example. Most mobile phone manufacturers provide software

that emulates the physical device. Software developers use these emulators to write

and test code. It’s a lot easier for a developer to write code using an emulator than to

have to be constantly deploying code to a physical device every time a line of code is

changed.

25

Using emulators speeds up the process of writing and testing applications that run

mobile phones. But at some point, someone, somewhere is going to need to test that

software on a real mobile phone. To address this issue, companies set up mobile phone

testing farms: A company will buy every mobile phone known to man and put them in a

lab. The lab is configured to allow a tester to declare the physical phone that the given

software under test will be installed and run on. (Some companies have automated the

process, and others even provide mobile phone farms as a service.) In this case, the

challenge is conducting large-scale performance testing on disparate physical devices.

The same cannot be said about IoT devices such as fitness trackers, household appli-

ances and driverless vehicles. These devices are positioned to be an important part of

the edge computing ecosystem, but presently, the emulation capabilities required to

conduct adequate performance testing of software intended to run on these devices

are limited — or, in some cases, nonexistent. And there is still the problem that at

some point somebody is going to have to load the software onto a piece of the physical

hardware in order to run the performance tests required.

Given that most modern performance testing is a continuous, automated undertaking,

when it comes to performance testing in an edge computing environment, it seems as

as if we’ve gone back to the Stone Age.

How to Move Forward

Traditionally, companies buy hardware in order to run software, so most performance

testing today is primarily focused on testing software. However, in the world of edge

computing, companies buy the appliance, which is a combination of both hardware and

https://bitbar.com/testing/mobile-testing-device-farm/

26

software. In this case, performance testing is focused on the appliance. It’s a different

approach to testing — one that still requires a good deal of time and labor to execute.

If the history of software development has shown us anything, it’s that at some point,

automation in general — and test automation in particular — must prevail. But in order

for automation to prevail in the edge computing ecosystem, a higher degree of stan-

dardization must be achieved among IoT devices on an industry-wide basis.

In other words, the way your tests interface with a driverless vehicle should not be that

different from the way the tests interact with an internet-aware refrigerator. Yes, you

might be testing different features and capabilities, but the means of integration must

be similar. Think of it this way: Monitoring the cooling system of a driverless vehicle

should not be that different from monitoring the cooling system of an internet-aware

refrigerator.

Solving the problem of working disparate devices in a common way is nothing new. At

one time the way a printer connected to a computer was completely different from the

way you connected a keyboard or mouse. Now, USBs provide the common standard.

The same thing needs to happen with edge computing devices.

Creating a universal standard for emulating IoT devices, as well as for physically

accessing any device via automation, are the hidden challenges in edge computing

when it comes to performance testing. But meeting these challenges is not insur-

mountable; unifying device standardization is a challenge we’ve met before and one

we’re sure to meet again. The company that meets the challenge this time may very

well set the standard for performance testing in the edge computing ecosystem for a

long time to come.

27

Performance Testing
Asynchronous
Applications

Performance Testing

Bob Reselman, Industry Analyst

28

Asynchronous computing addresses a need that has been at the forefront of appli-

cation development since the earliest days of computing: ensuring fast application

response between systems. Whereas synchronous architectures require a caller to wait

for a response from a called function before moving on with the program flow, asyn-

chronicity allows an external function or process to work independently of the caller.

The caller makes a request to execute work, and the external function or process “gets

back” to the caller with the result when the work is completed. In the meantime, the

caller moves on. The benefit is that the caller is not bound to the application while work

is being performed. The risk of blocking behavior is minimal.

Reducing Wait Time with Multithreading

One common way to implement asynchronicity internally in an application is to use mul-
tithreading, as shown below:

In a multithreaded environment, a function spawns independent threads that perform

work concurrently. One thread does not hold up the work of another. Then, when work is

complete, the results are collected together and passed back to the calling function for

further processing.

An event-driven programming language such as NodeJS implements asynchronic-

ity using callback functions. In the callback model, a caller to a function passes a

reference to another function — the callback function— that gets invoked when work is

completed.

https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading
https://nodejs.org/en/

29

The benefit of using callbacks to implement an asynchronous relation between calling

function and called function is that it allows the overall application to work at maximum

efficiency. No single process is holding up another process from doing work.

The callback pattern is useful for implementing an asynchronous interaction among

distributed systems, particularly web-based systems using HTTP. HTTP is based on

the request-response pattern. Typically, a caller makes a request for information to a

server on the internet. The server takes the request, does some work and then provides

a response with the result. The interaction is synchronous. The calling system — a web

page, for example — is bound to the server until the response is received.

When the response takes a few milliseconds to execute, there is little impact on the

caller. But when the server takes a long time to respond, problems can arise. However,

there are justifiable reasons for having a request that takes a long time to process.

For example, imagine a fictitious service that is able to determine the number of times

a particular person smiles in a given YouTube video. The caller passes the URL of the

YouTube video to the service. The service gets the video from YouTube, as defined by

the submitted URL. Then, the process does the processing.

One video might have a one-minute runtime, and another might have a 30-minute

runtime. Either runtime is acceptable to the service looking for smiles. However,

a caller using the service does not want to stay connected for the duration of the

30-minute analysis. Rather, the better way to do things is to make it so the video

analysis service responds quickly with an acknowledgement of receipt. Then, when

work is completed, the analysis service sends the results back to the caller at a callback

URL, as shown in the example below:

30

Asynchronous services are useful. However, they do make performance testing more

difficult.

Measuring the performance of a synchronous service typically happens in a sequen-

tial manner: You define the virtual users that will execute the given test script. The

test runs, requests are made and the results from responses are gathered. One step

leads to another. But when it comes to asynchronous testing, one step does not lead to

another. One step might start an asynchronous process that finishes well after the test

is run.

The risk when testing asynchronous applications is that the process becomes indepen-

dent of its caller. When the called process is on an external machine or in another web

domain, its behavior becomes hidden. The performance of the called process can no

longer be accurately tested within the scope of the request-response exchange. Other

ways of observing performance need to be implemented.

Leveraging Event Information in Logs

One of the easiest ways to observe performance in a distributed asynchronous applica-

tion is to leverage the power of logs. Logs provide the glue that binds separate systems

together. Depending on the logging mechanism in force, logs can capture function

timespan, memory and CPU capacity utilization, as well as network throughput, to

name a few metrics.

Once a system is configured so that every component of an asynchronous application is

logging information in a consistent, identifiable manner, what remains is to aggregate

the log information to create a unified picture of performance activity overall, as shown

below:

31

Using a unique correlation ID that gets passed among all components that are part of

an asynchronous transaction provides a reliable mechanism by which to group various

log entries for subsequent analysis. (See the details of working with correlation IDs

here.)

The important thing to remember is that in an asynchronous application, any execution

path can use a variety of processes that work independently of one another. Application

flow can just hop about in a nonlinear manner. Thus, the way to tie all relevant perfor-

mance metrics together is to aggregate log data from the various systems that make up

the application.

Using an Application Performance Monitor

Application performance monitors (APMs) are fast becoming a standard part of most

deployment environments. An APM is an agent that gets installed on a machine — either

virtual or pure hardware — as part of the provisioning process. APMs observe machine

behavior at a very low level. For example, most APMs will report CPU utilization, memory

allocation and consumption, network I/O and disk activity. The information that an APM

provides is very useful when determining application performance during a test.

Information provided by APMs is particularly useful when it comes to performance

testing asynchronous applications. Much in the same way that log information from

independent components can be tied together to provide a fuller understanding of per-

formance test behavior overall, so too can information that gets emitted from an APM.

https://blog.rapid7.com/2016/12/23/the-value-of-correlation-ids/

32

A bottleneck occurring in one system might not be readily apparent in the initial re-

quest-response that started the asynchronous interaction, and a fast request-response

time can be misleading. More information is needed. APM data from all the systems

used by an application will reveal actual performance shortcomings, even if poor per-

formance might not be evident when measuring the initial request and response that

started the interaction with the application.

Putting It All Together

Performance testing asynchronous applications is difficult, but it’s made easier if

proper test planning takes place. Testing asynchronous applications requires more

than measuring the timespan between the call to an application and the response

received back. Asynchronous applications work independent of caller, so the means

by which to observe behavior throughout the application must be identified before any

testing takes place.

A good test plan will incorporate information from machine logs and application perfor-

mance monitors to construct an accurate picture of the overall performance of the ap-

plication. Should log and APM information not be available, then test personnel will do

well to work with DevOps personnel to make the required information available. Being

able to aggregate all the relevant information from every part of a given asynchronous

application is critical for ensuring accurate performance testing. A performance test is

only as good as the information it consumes and the information it produces.

33

Performance Testing: Adding
the Service Registry and
Service Mesh into the Mix

Performance Testing

Bob Reselman, Industry Analyst

34

Ephemeral architectures in which microservices scale up automatically to meet

capacity requirements are a game changer. Whereas deploying container-backed mi-

croservices and orchestrating the environment they’re to run in used to be a laborious

manual task, today’s technologies such as Kubernetes automate much of the process

of packaging and deploying applications into the cloud.

But there is a problem: service management. One of the crucial tasks that needs to

happen in a microservice environment is that microservices need to find one another

and interact safely. Back when the number of microservices in play was minimal, it was

possible to manually configure one microservice IP address to another and declare the

operational behavior between them.

But that was then and this is now. Today, a single enterprise might have thousands of

microservices in force. Many of these microservices will be created and destroyed as

needed — which, by the way, is the nature of ephemeral computing. Continually fiddling

with configuration settings manually to maintain reliable communication between an

enterprise’s microservices is archaic.

Modern microservice management requirements exceed human capacity, and better

solutions are needed. Enter the service registry and the service mesh.

35

Understanding the Service Registry

A service registry is a database that keeps track of a microservice’s instances and

locations. Typically, when a microservice starts up, it registers itself to the service

registry. Once a microservice is registered, most times the service registry will call

the microservice’s health check API to make sure the microservice is running properly.

Upon shutdown, the microservice removes itself from the service registry.

There are a number of open source service registry technologies available. The Apache

Foundation publishes ZooKeeper. Also, Consul and Etcd are popular solutions.

The service registry pattern is pervasive. These days, most microservices are assigned

IP addresses dynamically, so the service registry is the only way that one microservice

can get the information it needs to communicate with another service. In fact, the

service registry is so important that it serves as the foundation of the next generation

of distributed computing technology: the service mesh.

Evolution into the Service Mesh

A service mesh is a technology that provides a layer of infrastructure that facilitates

communication between microservices. Most service mesh projects provide service

registration internally, as would be expected. But a service mesh adds functionality for

declaring operational behavior such as whitelist security, failure retries and routing

behavior.

36

For example, imagine a microservice that calls out to another microservice, such as

time.jsontest.com, which is outside the application domain. Unless the service mesh

is configured to allow calls to the external resource at time.jsontest.com, any service

using the external resource will fail until access is granted. (Restricting access to

external domains by default is a good security practice.)

The security capabilities alone are a compelling reason to use a service mesh to coor-

dinate microservice behavior, but there’s more. Most service mesh projects can publish

a graph of microservice connections and dependencies, along with performance all

along the way.

There are many open source service mesh technologies available. One is Istio, which

was started by developers from Google, IBM and Lyft. Linkerd is a service mesh project

sponsored by the Cloud Native Computing Foundation. Consul, which is mentioned

above as a service registry project, has evolved into a full-fledged service mesh

product. These are just a few of the many service mesh products that are appearing on

the distributed cloud-based computing landscape.

Why a Service Registry and a Service Mesh
are Important to Performance Testing

As working in the cloud has become more prevalent in the world of performance

testing, so too will working with service discovery technologies such as the service

registry and, particularly, the service mesh. The service registry and service mesh are

not low-level pieces of infrastructure; rather, they are first-class players in the enter-

prise’s digital computing infrastructure.

https://istio.io/
https://linkerd.io/
https://www.consul.io/

37

In the old days, when applications where monolithic and everything lived behind a

single IP address, all the performance tester needed to be concerned with was behavior

at that IP address. Today, it’s different. There might be thousands of IP address in play

that change at a moment’s notice, and there might be different operational and security

policies in force at each address.

Performance testing is no longer about measuring the behavior of a single request

and response at a single entry point. There will be hundreds, maybe thousands of

points along the execution path to consider, so at the least, the tester is going to have

to accommodate collecting performance data from throughout the ecosystem. The

performance tester also is going to have to know at least enough about the workings

of the service mesh in order to collaborate with DevOps engineers to set routing con-

figurations for A/B testing and to determine environment optimization throughout the

system.

Modern performance testing goes well beyond writing procedural scripts and collect-

ing test results. Today’s digital ecosystem is intelligent. As systems become more

autonomous and ephemeral, having a strong grasp of technologies such as the service

registry and service mesh will go from being a nice-to-have skill to one that is required

for testing professionals. The modern performance tester needs to be able to work with

intelligent systems to design and implement comprehensive tests that are as dynamic

as the systems being tested.

38

How the Service
Mesh Fits with
Performance Testing

Performance Testing

Bob Reselman, Industry Analyst

39

The digital infrastructure of the modern IT enterprise is a complex place. The days of

one server attached to a router at a dedicated IP that’s protected by a hand-configured

firewall are gone.

Today, we live in a world of virtualization and ephemeral computing. Computing infra-

structure expands and contracts automatically to satisfy the demands of the moment.

IP addresses come and go. Security policies change by the minute. Any service can be

anywhere at any time. New forms of automation are required to support an enterprise

that’s growing beyond the capabilities of human management. Once such technology

that is appearing on the digital landscape is the service mesh.

The service mesh is expanding automation’s capabilities in terms of environment

discovery, operation and maintenance. Not only is the service mesh affecting how

services get deployed into a company’s digital environment, but the technology is also

going to play a larger role in system reliability and performance, so those concerned

with performance and reliability testing are going to need to have an operational grasp

of how the service mesh works, particularly when it comes to routing and retries.

As the service mesh becomes more prevalent as the standard control plane, perfor-

mance test engineers will need to be familiar with the technology when creating test

plans that accommodate architectures that use a service mesh.

https://blog.gurock.com/service-registry-service-mesh/

40

The Case for the Service Mesh

The service mesh solves two fundamental problems in modern distributed computing:

finding the location of a service within the technology stack, and defining how to ac-

commodate service failure.

Before the advent of the service mesh, each service needed to know the location of

service upon which it depended. In the example below, for Service A to be able to pass

work to Service C, it must know the exact location of Service C. This location might

be defined as an IP address or as a DNS name. Should the location of the dependent

service change, at best, a configuration setting might need to be altered; at worst, the

entire consuming service might need to be rewritten.

Tight coupling between services proved to be brittle and hard to scale, so companies

started to use service discovery technologies such as ZooKeeper, Consul and Etcd,

which alleviated the need for services to know the location of other services upon

which they depended.

https://zookeeper.apache.org/
https://www.consul.io/
https://github.com/coreos/etcd

41

However, one of the problems that was still outstanding was what a service does when

one of the dependencies fails. Should the service just error out? Should it retry? If it

should retry, how many times? This is where the service mesh comes in.

The service mesh combines, among other things, service discovery and failure policy.

In other words, not only will the service mesh allow services to interact with one

another, it will also execute retries, redirection or aborts, based on a policy configura-

tion, as shown in the example below.

The service mesh is the control plane that routes traffic between services and provides

fail-safe mechanisms for services. In addition, a service mesh logs all activity in its

purview, thus providing fine-grain insight into overall system performance. This type of

logging makes distributed tracing possible, which makes monitoring and troubleshoot-

ing activities among all services in the system a lot easier, no matter their location.

The more popular technologies on the service mesh landscape are Linkerd, Envoy and

Istio.

What’s important to understand about the service mesh from a performance testing

perspective is that the technology has a direct effect on system performance.

Consequently, test engineers should have at least a working knowledge of the whys

and hows of service mesh technologies. Test engineers also will derive a good deal of

benefit from integrating the data that the service mesh generates into test planning

and reporting.

https://linkerd.io/
https://www.envoyproxy.io/
https://istio.io/

42

Accommodating the Service Mesh in Performance Test Planning

How might performance test engineers take advantage of what the service mesh has to

offer? It depends on the scope of performance testing and interest of the test engineer.

If the engineer is concerned with nothing more than response time between the web

client and web server, understanding the nature and use of a service mesh has limited

value. However, if the scope of testing goes to lower levels of any application’s perfor-

mance on the server side, then things get interesting.

The first, most telling benefit is that a service mesh supports distributed tracing.

This means that the service mesh makes it possible to observe the time it takes for all

services in a distributed architecture to execute, so test engineers can identify perfor-

mance bottlenecks with greater accuracy. Then, once a bottleneck is identified, test

engineers can correlate tracing data with configuration settings to get a clearer under-

standing of the nature of performance problems.

In addition to becoming an information resource, the service mesh becomes a point of

interest in testing itself. Remember, service mesh configuration will have have a direct

impact on system performance, and such an impact adds a new dimension to perfor-

mance testing. Just as application logic needs to be performance tested, so too will

service mesh activity. This is particularly important when it comes to testing auto-re-
tries, request deadline settings and circuit-breaking configuration.

An auto-retry is a setting in service mesh configuration that makes it so that

a consuming service will retry a dependent service when it returns a certain

type of error code. For example, should Service A call Service B, and Service

B returns a 502 error (bad gateway), Service A will automatically retry the call

for a predefined number of times. 502 errors can be short-term, thus making

a retry a reasonable action.

A request deadline is similar to a timeout. A request is allowed a certain

period of time to execute against a called service. If the deadline is reached,

regardless of retry setting, the request will fail, preventing an undue load

burden from being placed on the called service.

43

Circuit breaking is a way to prevent cascading failure, when one point in

the system — a service, for example — fails and causes failure among other

points. A circuit breaker is a mechanism that is “wrapped” around a service

so that if the service is in a failure state, a circuit breaker “trips.” Calls to the

failing service are rejected as errors immediately, without having to incur the

overhead of routing to and invoking the service. Also, a service mesh circuit

breaker will record attempted calls to the failed service and alert monitors

observing service mesh activity that the circuit breaker has been “tripped.”

As service mesh becomes part of the enterprise system architecture, performance test

engineers will do well to make service mesh testing part of the overall performance

testing plan.

Putting It All Together

The days of old-school performance testing are coming to a close. Modern applications

are just too complex to rely on measuring request and response times between client

and server alone. There are too many moving parts. Enterprise architects understand

the need to implement technologies that allow for dynamic provisioning and operations

without sacrificing the ability to observe and manage systems, regardless of size and

rate of change.

As the spirit of DevOps continues to permeate the IT culture, the service mesh is

becoming a key component of the modern distributed enterprise. Having a clear un-

derstanding of the value and use of service mesh technologies will allow test engineers

to add a new dimension to performance test process and planning, and performance

testers who are well-versed in the technology will ensure that the service mesh is used

to optimum benefit.

44

About TestRail

We build popular software testing tools for QA and development teams. Many of the

world’s best teams and thousands of testers and developers use our products to build

rock-solid software every day. We are proud that TestRail – our web-based test man-

agement tool – has become one of the leading tools to help software teams improve

their testing efforts.

Gurock Software was founded in 2004 and we now have offices in Frankfurt (our HQ),

Dublin, Austin & Houston. Our world-wide distributed team focuses on building and

supporting powerful tools with beautiful interfaces to help software teams around the

world ship reliable software.

Gurock part of the Idera, Inc. family of testing tools, which includes Ranorex, Kiuwan,

Travis CI. Idera, Inc. is the parent company of global B2B software productivity brands

whose solutions enable technical users to do more with less, faster. Idera, Inc. brands

span three divisions – Database Tools, Developer Tools, and Test Management Tools –

with products that are evangelized by millions of community members and more than

50,000 customers worldwide, including some of the world’s largest healthcare, financial

services, retail, and technology companies.

https://www.gurock.com/testrail
http://www.ideracorp.com/leadership
https://www.ranorex.com
https://www.kiuwan.com/
https://travis-ci.org/

	Testing All
5 Aspects of a System’s Performance
	Shifting Left:
Performance Testing at the Unit Testing Level
	Performance Testing in an Ephemeral
Environment
	Performance Testing in Edge Computing
	Performance Testing Asynchronous
Applications
	Performance Testing: Adding the Service Registry and
Service Mesh into the Mix
	How the Service Mesh Fits with
Performance Testing

